已知a、b、c∈R+,a、b、c互不相等且abc=1.求证:a+b+c<1/a+1/b+1/c.
问题描述:
已知a、b、c∈R+,a、b、c互不相等且abc=1.求证:
+
a
+
b
<
c
+1 a
+1 b
. 1 c
答
(本小题满分14分)
证明:∵a、b、c∈R+且互不相等,且abc=1
∴
+
a
+
b
=
c
+
1 bc
+
1 ac
<
1 ab
+
+1 b
1 c 2
+
+1 a
1 c 2
=
+1 a
1 b 2
+1 a
+1 b
.1 c
故不等式成立.