设f(n)=1n+1+1n+2+1n+3+…+13n(n∈N*),则f(n+1)-f(n)=( ) A.13n+1 B.13n+2 C.13n+1+13n+2−23n+3 D.13n+1+13n+2
问题描述:
设f(n)=
+1 n+1
+1 n+2
+…+1 n+3
(n∈N*),则f(n+1)-f(n)=( )1 3n
A.
1 3n+1
B.
1 3n+2
C.
+1 3n+1
−1 3n+2
2 3n+3
D.
+1 3n+1
1 3n+2
答
根据题中所给式子,得f(n+1)-f(n)
=
+1 (n+1)+1
+1 (n+1)+2
+…+1 (n+1)+3
-(1 3(n+1)
+1 n+1
+1 n+2
+…+1 n+3
)1 3n
=
+1 3n+1
+1 3n+2
-1 3n+3
1 n+1
=
+1 3n+1
−1 3n+2
2 3n+3
故选C.