设f(n)=1n+1+1n+2+1n+3+…+13n(n∈N*),则f(n+1)-f(n)=(  ) A.13n+1 B.13n+2 C.13n+1+13n+2−23n+3 D.13n+1+13n+2

问题描述:

f(n)=

1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n
(n∈N*),则f(n+1)-f(n)=(  )
A.
1
3n+1

B.
1
3n+2

C.
1
3n+1
+
1
3n+2
2
3n+3

D.
1
3n+1
+
1
3n+2

根据题中所给式子,得f(n+1)-f(n)
=

1
(n+1)+1
+
1
(n+1)+2
+
1
(n+1)+3
+…+
1
3(n+1)
-(
1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n

=
1
3n+1
+
1
3n+2
+
1
3n+3
-
1
n+1

=
1
3n+1
+
1
3n+2
2
3n+3

故选C.