收敛数列或达到其上确界或达到其下确界或两者都达到,请给出证明

问题描述:

收敛数列或达到其上确界或达到其下确界或两者都达到,请给出证明

设数列 {a(n)} 收敛,其极限为 a.如果 a(n) 恒等于 a ,则数 a 显然既是 {a(n)} 的上确界又是下确界,结论已成立.如果 a(n) 不恒等于 a,那么必定存在某个 a(n(0))≠a,不妨设 a(n(0))n(0) ,凡是 n>N 时便有 |a(n)-a| a(n...