快,

问题描述:

快,
数列{An}的前n项和为Sn,a1=1,S(n+1)=4An+2,若Bn=A(n+1)-2An,
求1,Bn?
2,若Cn=1/A(n+1)-2An,求Cn的前六项和.
3,若Dn=An/2^n,证明是等差数列.(2^n 意思是2的n 次方)

(1)∵数列{a[n]},S[n+1]=4a[n]+2∴S[n+2]=4a[n+1]+2将上面两式相减,得:a[n+2]=4a[n+1]-4a[n]即:a[n+2]-2a[n+1]=2(a[n+1]-2a[n])∵b[n]=a[n+1]-2a[n]∴b[n+1]=2b[n]∵S[n+1]=4a[n]+2∴a[2]+a[1]=4[1]+2∵a[1]=1∴a[...