线性代数:证明:非零的幂零矩阵不可对角化设矩阵A的特征值为+1和-1,且A可相似对角化,证明A^2=I
问题描述:
线性代数:证明:非零的幂零矩阵不可对角化
设矩阵A的特征值为+1和-1,且A可相似对角化,证明A^2=I
答
线性代数:证明:非零的幂零矩阵不可对角化
设矩阵A的特征值为+1和-1,且A可相似对角化,证明A^2=I