设抛物线的顶点为O,经过焦点垂直于轴的直线和抛物线交于两点B,C,经过抛物线上一点P垂直于轴的直线和轴交于点Q,求证:|PQ|是|BC|和|OQ|的比例中项.
问题描述:
设抛物线的顶点为O,经过焦点垂直于轴的直线和抛物线交于两点B,C,经过抛物线上一点P垂直于轴的直线和轴交于点Q,求证:|PQ|是|BC|和|OQ|的比例中项.
答
证明:设抛物线为y2=2px(p>0).则焦点F(p2,0),依题意,B,C的坐标可由x=p2y2=2px(p>0)得:y2=p2,y=p或-p,∴B(p2,p),C(p2,-p),|BC|=p-(-p)=2p;设P(2pt2,2pt),则Q(2pt2,0),∴|PQ|=|2pt...