多元函数连续、可偏导,但是不可微的几何意义是什么啊?
问题描述:
多元函数连续、可偏导,但是不可微的几何意义是什么啊?
连续就是图像不间断,
可偏导就是在一个方向上平滑,
那可微的几何意义是什么呢?
答
回顾一元函数中可微的定义,如果一元函数y=f(x)可微,则dy=f'(x)dx,把dy和dx分别理解为y和x在x0处的微小增量,即dy=y-y0,dx=x-x0,则可微表达式就变为y-y0=f'(x0)(x-x0),这就是f(x)图像在x0处的切线方程,而可微就意味着切线方程存在.对比二元函数,z=f(x,y)的全微分表达式dz=z'x*dx+z'y*dy,按照上述方法理解,其实就是二元函数在(x0,y0)处的切平面方程,所以如果二元函数在某点不可微,就意味着函数图像在该点不存在切平面.