证明一个周期函数
问题描述:
证明一个周期函数
求证f(x)+f(x+a)+f(x+2a)+f(x+3a)+f(x+4a)=f(x)f(x+a)f(x+2a)f(x+3a)f(x+4a)的周期为T=5a
f(x+a)*f(x+2a)*f(x+3a)*f(x+4a)=1时 作商得到的是T=4a为什么不适合
答
f(x)+f(x+a)+f(x+2a)+f(x+3a)+f(x+4a)=f(x)f(x+a)f(x+2a)f(x+3a)f(x+4a)
令x=x+a
f(x+a)+f(x+2a)+f(x+3a)+f(x+4a)+f(x+5a)=f(x+a)f(x+2a)f(x+3a)f(x+4a)f(x+5a)
两式做差:
f(x+5a)-f(x)=【f(x+5a)-f(x)】【f(x+a)f(x+2a)f(x+3a)f(x+4a)】
整理
【f(x+5a)-f(x)】【f(x+a)f(x+2a)f(x+3a)f(x+4a)-1】=0
若f(x+5a)-f(x)=0则f(x+5a)=f(x)证毕
否则
f(x+a)f(x+2a)f(x+3a)f(x+4a)=1
令x=x+a
f(x+2a)f(x+3a)f(x+4a)f(x+5a)=1
两式相比有:
f(x+5a)/f(x)=1则f(x+5a)=f(x)证毕