在△MNB中,BN=6,点A,C,D分别在MB,NB,MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则四边形ABCD的周长是(  ) A.24 B.18 C.16 D.12

问题描述:

在△MNB中,BN=6,点A,C,D分别在MB,NB,MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则四边形ABCD的周长是(  )
A. 24
B. 18
C. 16
D. 12

在平行四边形ABCD中CD∥AB,AD∥BC,
∴∠M=∠NDC,∠N=∠MDA,
∵∠NDC=∠MDA,
∴∠M=∠N=∠NDC=∠MDA,
∴MB=BN=6,CD=CN,AD=MA,
∴四边形ABCD的周长=AB+BC+CD+AD=MA+AB+BC+CN=MB+BN=2BN=12.
故选D.