已知抛物线的顶点在坐标原点,对称轴为x轴,且与圆x2+y2=4相交于A、B两点,|AB|=23,求抛物线方程.
问题描述:
已知抛物线的顶点在坐标原点,对称轴为x轴,且与圆x2+y2=4相交于A、B两点,|AB|=2
,求抛物线方程.
3
答
由已知,抛物线的焦点可能在x轴正半轴上,也可能在负半轴上.
故可设抛物线方程为:y2=ax(a≠0). (2分)
设抛物线与圆x2+y2=4的交点A(x1,y1),B(x2,y2).
∵抛物线y2=ax(a≠0)与圆x2+y2=4都关于x轴对称,
∴点A与B关于x轴对称,
∴|y1|=|y2|且|y1|+|y2|=2
,(6分)
3
∴|y1|=|y2|=
,代入圆x2+y2=4得x2+3=4,
3
∴x=±1,(8分)
∴A(±1,
)或A(±1,-
3
),代入抛物线方程,得:(
3
)2=±a,∴a=±3.(10分)
3
∴所求抛物线方程是:y2=3x或y2=-3x.(12分)
注:少一种情况扣(4分).也可分类讨论.