已知a,b∈{1,2,3,4,5,6},直线l1:x-2y-1=0,l2:ax+by-1=0,则直线l1⊥l2的概率为 _ .
问题描述:
已知a,b∈{1,2,3,4,5,6},直线l1:x-2y-1=0,l2:ax+by-1=0,则直线l1⊥l2的概率为 ___ .
答
设事件A为“直线l1⊥l2”,
∵a,b∈{1,2,3,4,5,6}的总事件数为(1,1),(1,2)…,(1,6),
(2,1),(2,2),…,(2,6),…,(5,6),…,(6,6)共36种,
而l1:x-2y-1=0,l2:ax+by-1=0,l1⊥l2⇔1•a-2b=0,
∴a=2时,b=1;
a=4时,b=2;
a=6时,b=3;
共3种情形.
∴P(A)=
=3 36
.1 12
∴直线l1⊥l2的概率为:
.1 12
故答案为:
1 12