方程sin²x=cos²x的解集是

问题描述:

方程sin²x=cos²x的解集是

sin^2-cos^2=0则sin2xcos(π/4)-cos2xsin(π/4)=√2sin(2x-π/4)所以,令2x-π/4=m,令y=√2sin(2x-π/4)即y=√2sinm,当m=kπ(k∈Z)时,y=√2sinm=0故m=kπ=2x-π/4(k∈Z)解得,x=π/8+kπ/2π(k∈Z)...