线性代数:矩阵A有3个线性无关的特征向量,λ=2是A的二重特征值,则λ=2有两个线性无关的特征向量.问:1我好想学蒙了,为什么前两句话能推出第三句话?请给出定理或定义.2如果仅仅给出 λ=2是A的二重特征值,能推出 则λ=2有两个线性无关的特征向量.我财富好像不算多.

问题描述:

线性代数:矩阵A有3个线性无关的特征向量,λ=2是A的二重特征值,则λ=2有两个线性无关的特征向量.
问:1我好想学蒙了,为什么前两句话能推出第三句话?请给出定理或定义.
2如果仅仅给出 λ=2是A的二重特征值,能推出 则λ=2有两个线性无关的特征向量.
我财富好像不算多.

1、根据定义:Ax=λx,那么x是特征向量,λ是特征值
当λ=2是二重特征值时,Ax=2x要有两个线性无关的解,这样A的特征无关向量才能有3个
2、这是不能的,λ=2是A的二重特征值,可能有两个线性无关的特征向量,也可能只有一个,如果是前一种,A可以相似对角化,后一种不行