在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:(a+b)2,也可表示为:c2+4•(12ab),即(a+b)2=c2+4•(12ab)由此推出勾股定理a2+b2=c2,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(II)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);(2)请你用(III)提供的图形进行组合,用组合图形的面积表达式验证(x+y)2=x2+2xy+y2;(3)请你自己设计图形的组合,用其面积表达式验证:(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq.
问题描述:
在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:
(a+b)2,也可表示为:c2+4•(
ab),1 2
即(a+b)2=c2+4•(
ab)由此推出勾股定理a2+b2=c2,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.1 2
(1)请你用图(II)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);
(2)请你用(III)提供的图形进行组合,用组合图形的面积表达式验证(x+y)2=x2+2xy+y2;
(3)请你自己设计图形的组合,用其面积表达式验证:(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq.
答
(1)大正方形的面积为:c2,中间空白部分正方形面积为:(b-a)2;四个阴影部分直角三角形面积和为:4×12ab;由图形关系可知:大正方形面积=空白正方形面积+四直角三角形面积,即有:c2=(b-a)2+4×12ab=b2-2ab+a...
答案解析:(1)根据阴影部分的面积=大正方形的面积-小正方形的面积=4个直角三角形的面积,即可证明;
(2)可以拼成一个边长是x+y的正方形,它由两个边长分别是x、y的正方形和两个长、宽分别是x、y的长方形组成;
(3)可以拼成一个长、宽分别是x+p和x+q的长方形,它由边长是x的正方形,长宽分别是x和p,x和q,p和q组成的图形.
考试点:勾股定理的证明.
知识点:注意熟练掌握通过不同的方法计算同一个图形的面积来证明一些公式的方法.