两条船分别从河的两岸同时开出,它们的速度是固定的,第一次相遇在距离一侧河岸700米处,然后继续前进,都到达对岸后立即返回,第二次相遇在距离另一侧河岸400米处,问河有多宽?(船到岸后掉头的时间不计)
问题描述:
两条船分别从河的两岸同时开出,它们的速度是固定的,第一次相遇在距离一侧河岸700米处,然后继续前进,都到达对岸后立即返回,第二次相遇在距离另一侧河岸400米处,问河有多宽?(船到岸后掉头的时间不计)
答
设置河的宽度为X,两船分别为A船和B船.
可得:
假设第一次A行驶700,则B在相同时间行驶X-700
这样第二次A的行驶路程为X-700+400=X-300
B的行使路程为700+X-400=X+300
设A的速度为a,B的速度为b,可得
700/a==(X-700)/b
(X-300)/a=(X+300)/b
解得X=1700
即河的宽度为1700米.
或者:
因为速度不变,所以第一次相遇时,两船所行的距离和为1倍河宽,当第二次相遇时,两船所行的距离和为3倍的河宽,从A岸出发的轮船第一次相遇时行了700米,所以从A岸出发的轮船第二次相遇时行了3×700=2100米,设河宽为X米,根据题意得:
X+400=2100
解得:X=1700
答:河宽为1700米.