已知:关于x的方程kx2-(3k-1)x+2(k-1)=0 (1)求证:无论k为任何实数,方程总有实数根; (2)若此方程有两个实数根x1,x2,且|x1-x2|=2,求k的值.

问题描述:

已知:关于x的方程kx2-(3k-1)x+2(k-1)=0
(1)求证:无论k为任何实数,方程总有实数根;
(2)若此方程有两个实数根x1,x2,且|x1-x2|=2,求k的值.

(1)证明:①当k=0时,方程是一元一次方程,有实数根;②当k≠0时,方程是一元二次方程,∵△=(3k-1)2-4k×2(k-1)=(k+1)2≥0,∴无论k为任何实数,方程总有实数根.(2)∵此方程有两个实数根x1,x2,∴x1+x2...