甲、乙、丙、丁4人去钓鱼,共钓到25条鱼,按数量从多到少的排名是甲、乙、丙、丁.又知甲钓到的鱼的条数是乙和丙钓到鱼的条数的和,乙钓到鱼的条数是丙和丁钓到鱼的条数的和.那么,甲乙丙丁各钓到几条鱼?

问题描述:

甲、乙、丙、丁4人去钓鱼,共钓到25条鱼,按数量从多到少的排名是甲、乙、丙、丁.又知甲钓到的鱼的条数是乙和丙钓到鱼的条数的和,乙钓到鱼的条数是丙和丁钓到鱼的条数的和.那么,甲乙丙丁各钓到几条鱼?

设甲乙丙丁分别钓了a、b、c、d条鱼,且a>b>c>d,根据题意可得方程:
a+b+c+d=25,①;
a=b+c,②;
b=c+d,③;
把③代入②可得:a=2c+d,④;
把③和④都代入①可得:
4c+3d=25,解得这个二元一次方程的整数解有:
当c=1时,d=7;
当c=4时,d=3;
又因为:c>d,所以符合题意的只有c=4,d=3,
所以b=4+3=7;a=7+4=11;
答:甲乙丙丁分别钓了11条、7条、4条、3条.
答案解析:根据题干,设甲乙丙丁分别钓了a、b、c、d条鱼,且a>b>c>d,那么根据题干中已知条件可得:a+b+c+d=25,a=b+c,b=c+d由此即可利用等量代换的思想解决问题.
考试点:不定方程的分析求解;简单的等量代换问题.
知识点:此题设出四个未知数,但是不用全部求解,可以利用等量代换的思想消去其中两个未知数,得出一个二元一次方程,求得其整数解即可解决问题.