1/(x-10)+1/(x-6)=1/(x-7)+1/(x-9)的解

问题描述:

1/(x-10)+1/(x-6)=1/(x-7)+1/(x-9)的解

通分得:[(X-6)+(X-10)]/[(X-6)*(X-10)]=[(X-7)+(X-9)]/[(X-7)*(X-9)](2X-16)/(X^2-16X+60)=(2X-16)/(X^2-16X+63)要使方程成立,则2X-16=0(1)或X^2-16X+60=X^2-16X+63(2)(1)的解为:X=8;(2)无解所以:1/(x-10)+1/(x-6)=...