已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为_.

问题描述:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为______.

圆C:x2+y2-6x-4y+8=0,
令y=0可得x2-6x+8=0,
得圆C与坐标轴的交点分别为(2,0),(4,0),
则a=2,c=4,b2=12,
所以双曲线的标准方程为

x2
4
y2
12
=1.
故答案为:
x2
4
y2
12
=1.