已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为_.
问题描述:
已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为______.
答
−
=1.
故答案为:
−
=1.
圆C:x2+y2-6x-4y+8=0,
令y=0可得x2-6x+8=0,
得圆C与坐标轴的交点分别为(2,0),(4,0),
则a=2,c=4,b2=12,
所以双曲线的标准方程为
x2 |
4 |
y2 |
12 |
故答案为:
x2 |
4 |
y2 |
12 |