计算1+(1+2)+(1+2+3)+…+(1+2+3+…+n).
问题描述:
计算1+(1+2)+(1+2+3)+…+(1+2+3+…+n).
答
∵1+2+3+…+n=
=n(n+1) 2
,
n2+n 2
∴1+(1+2)+(1+2+3)+…+(1+2+3+…+n)
=
(1+12+2+22+3+32+…+n+n2)1 2
=
[(1+2+3+…+n)+(12+22+32+…+n2)]1 2
=
•[1 2
+n(n+1) 2
]n(n+1)(2n+1) 6
=
+n(n+1) 4
.n(n+1)(2n+1) 12