cos(pi/4-a)=3/5 sin(3pi/4+b)=5/13 求sin(a+b)
问题描述:
cos(pi/4-a)=3/5 sin(3pi/4+b)=5/13 求sin(a+b)
答
因为(3π/4+B)-(π/4-a)=B+a+π/2
所以cos[(a+B)+π/2]=cos(a+B)*cosπ/2-sin(a+B)*sinπ/2=-sin(a+b)
所以sin(a+b)=-cos[(a+B)+π/2]=-cos[(3π/4+B)-(π/4-B)]
=-[cos(3π/4+B)*cos(π/4-a)+sin(3π/4+B)*sin(π/4-a)]
由π/4