分式计算:(1+1/x+1)÷(x-x^2/x-1)
问题描述:
分式计算:(1+1/x+1)÷(x-x^2/x-1)
解方程:4/x-1-3/x=6/x^2-x
答
:(1+1/x+1)÷(x-x^2/x-1)
=[(x+1)/(x+1)+1/(x+1)]÷[x(x-1)-x²]/(x-1)
=(x+2)/(x+1)×(x-1)/(-x)
=-(x²+x-2)/(x²+x)
4/x-1-3/x=6/x^2-x
4/(x-1)-3/x=6/x(x-1)
4x-3(x-1)=6
4x-3x+3=6
x=3
检验x=3是方程的解
∴方程的解是x=3不好意思,第一题符号打错了题目是:(1+1/x-1)÷(x-x^2/x-1),能不能帮个忙,谢谢,感激不尽:(1+1/x-1)÷(x-x^2/x-1)=[(x-1)/(x-1)+1/(x-1)]÷[x(x-1)-x²]/(x-1)=x/(x-1)×(x-1)/(-x)=-1