二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0(a、b、c∈R).

问题描述:

二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0(a、b、c∈R).
(1)求证:两函数图象交于不同的两点A、B;(2)求证:方程f(x)-g(x)=0的两根均小于2(3)求线段AB在x轴上的射影A1B1的长的取值范围.

1因为a+b+c=0,所以有方程ax^2+bx+c=0有一根为1,所以有b^2-4ac>=0;因为方程ax^2+bx+c=-bx的判别式为4b^2-4ac=3b^2+(b^2-4ac)>0[在这里有会有等号是因为如果有“=”,那么必有a=b=c=0这与题目所给的条件a>b>c相背],所...