意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:序号 ① ② ③ ④周长 6 10 16 26若按此规律继续作长方形,则序号为⑧的长方形周长是(  )A. 288B. 178C. 28D. 110

问题描述:

意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:

序号
周长 6 10 16 26
若按此规律继续作长方形,则序号为⑧的长方形周长是(  )
A. 288
B. 178
C. 28
D. 110

178

意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和、现以这组数中的各个数作为正方形的边长值构造如下正方形:
再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、③、④、…相应长方形的周长如下表所示:
序号 ① ② ③ ④ …
周长 6 10 x y …
仔细观察图形,上表中的x=
16
,y=
26

若按此规律继续作长方形,则序号为⑧的长方形周长是
178
这个数列早在12世纪就被人发现了,当时只是用递推公式表示的,就是后一项等于前两项的和,而它的通项公式直到18世纪才有人给出:
第N个数aN=(1/√5)*{[(1+√5)/2]^N-[(1-√5)/2]^N}
式子虽然有点烦,但是正确的,不信可以代进去试试。
至于解法,用现在的眼光来看有很多,差分方程,矩阵对角化……
楼主要具体解法可以再讨论。

由分析可得:第⑤个的周长为:2(8+13),
第⑥的周长为:2(13+21),
第⑦个的周长为:2(21+34),
第⑧个的周长为:2(34+55)=178,故选B.
答案解析:结合图形分析表格中图形的周长,①的周长为:2(1+2),②的周长为:2(2+3),③的周长为:2(3+5),④的周长为:2(5+8),由此可推出第n个长方形的宽为第n-1个长方形的长,第n个长方形的长为第n-1个长方形的长和宽的和.
考试点:规律型:图形的变化类.


知识点:要想得到长方形的周长规律,应先找长方形长、宽的变换规律.分析图形中的长和宽,然后结合图表中长方形的周长即可得出长方形周长的变换规律.

这个数列早在12世纪就被人发现了,当时只是用递推公式表示的,就是后一项等于前两项的和,而它的通项公式直到18世纪才有人给出:
第N个数aN=(1/√5)*{[(1+√5)/2]^N-[(1-√5)/2]^N}
式子虽然有点烦,但是正确的,不信可以代进去试试。
至于解法,用现在的眼光来看有很多,差分方程,矩阵对角化……