(1/11+1/21+1/31+1/41)×(1/21+1/31+1/41+1/51)−(1/11+1/21+1/31+1/41+1/51)× (1/21+1/31+1/41).

问题描述:

(

1
11
+
1
21
+
1
31
+
1
41
)×(
1
21
+
1
31
+
1
41
+
1
51
)−(
1
11
+
1
21
+
1
31
+
1
41
+
1
51
)× (
1
21
+
1
31
+
1
41
)

1
11
+
1
21
+
1
31
+
1
41
=a,
1
21
+
1
31
+
1
41
=b,
则原式=a×(b+
1
51
)-(a+
1
51
)×b
=ab+
1
51
a-ab-
1
51
b
=
1
51
×(a-b)
=
1
51
×[(
1
11
+
1
21
+
1
31
+
1
41
)-(
1
21
+
1
31
+
1
41
)]
=
1
51
×
1
11

=
1
561