根号1*2+2*4+3*6+...n*2n/1*3+2*6+3*9+...n*3n

问题描述:

根号1*2+2*4+3*6+...n*2n/1*3+2*6+3*9+...n*3n

√(1*2+2*4+3*6+...n*2n/1*3+2*6+3*9+...n*3n)=√ [2(1² +2² + 3² + ...+n²) / 3(1² +2² + 3² + ...+n²)]=√ (2/3)=(√6)/3