关于离散数学单射、满射、双射的问题
问题描述:
关于离散数学单射、满射、双射的问题
对于给定的A,B和f,判断f是否为从A到B的函数,如果是,说明f是否为单射、满射或双射的:
(1)A=Z,B=N,f(x)=x2+1
(2)A=N,B=Q,f(x)=1/x
(3)A=Z×N,B=Q,f((x,y))=x/(y+1)
(4)A={1,2,3},B={p,q,r},f={(1,q),(2,q),(3,q)}
(5)A=B=N,f(x)=2x
(6)A=B=R×R,f((x,y))=(y+1,x+1)
(7)A=Z×Z,B=Z,f((x,y))= x2+2y2
(8)A=N×N×N,B=N,f((x,y,z))=x+y-z
答
A 到 B 的映射,对于 A 来说,每个元素都要在 B 中有像,且每个元素只能有一个象.否则不够成映射.但根据 B 的中元素用于映射的数量可以分成这类:如果 B 里的元素都用到了就是满射(这种情况表明 B 中的元素个数不多于 ...N*N*N什么意思就是点的坐标,平面坐标不是 (x, y) 吗,就记作 R*R。你这是三元对,三个数全取自自然数集。