已知关于x的方程(1-a)x^2+(a+2)x-4=0,a∈R.求方程至少有一正根时,a的取值范围.
问题描述:
已知关于x的方程(1-a)x^2+(a+2)x-4=0,a∈R.求方程至少有一正根时,a的取值范围.
已知关于x的方程(1-a)x^2+(a+2)x-4=0,a∈R.
求方程至少有一正根时,a的取值范围.
答
方程至少有一个正跟,则要满足,1:有根 2,且根大于零
有三种情况:1,对称轴在Y轴左边,则 (0,0)点代进去要大于或者等于零
2,对称轴在Y上,则要满足b^2-4ac>0
3 ,对称轴在Y 右边,满足b^2-4ac>=0!
对于1:-b/2a=0 无解,不存在
对于2::-b/2a=0 且b^2-4ac>0 无解,不存在
对于2 :b^2-4ac>=0 且-b/2a>0 得 a=10