我市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1000元/台,1500元/台,2000元/台.(1)求该商场至少购买丙种电视机多少台?(2)若要求甲种电视机的台数不超过乙种电视的台数,问有哪些购买方案?
问题描述:
我市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1000元/台,1500元/台,2000元/台.
(1)求该商场至少购买丙种电视机多少台?
(2)若要求甲种电视机的台数不超过乙种电视的台数,问有哪些购买方案?
答
(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108-5x)台,根据题意,得1000×4x+1500×(108-5x)+2000x≤147000解这个不等式得x≥10因此至少购买丙种电视机10台;(2)甲种电视机4x台,购买...
答案解析:(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108-5x)台,根据“购进三种电视机的总金额不超过147000元”作为不等关系列不等式即可求解;
(2)根据“甲种电视机的台数不超过乙种电视的台数”作为不等关系列不等式4x≤108-5x,结合着(1)可求得x的取值范围,求x的整数解,即可求得购买方案.
考试点:一元一次不等式的应用.
知识点:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.