如图,直线y=-x+4与两坐标轴分别相交于A、B点,点M(x,y)是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由.(2)设四边形OCMD面积S,求S与x的函数关系式,并求出当四边形OCMD为正方形时的面积.(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0

问题描述:

如图,直线y=-x+4与两坐标轴分别相交于A、B点,点M(x,y)是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.

(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由.
(2)设四边形OCMD面积S,求S与x的函数关系式,并求出当四边形OCMD为正方形时的面积.
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),求当a为多少时正方形OCMD的周长被分为1:3.

(1)设点M的横坐标为x,则点M的纵坐标为-x+4(0<x<4,-x+4>0),则:MC=|-x+4|=-x+4,MD=|x|=x,∴C四边形OCMD=2(MC+MD)=2(-x+4+x)=8,∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于...
答案解析:(1)设点M的横坐标为x,则点M的纵坐标为-x+4(0<x<4,x>0,-x+4>0)用坐标表示线段的长度则:MC=|-x+4|=-x+4,MD=|x|=x,根据四边形的周长计算方法计算即可发现,当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8.
(2)先用x表示四边形的面积S四边形OCMD=-(x-2)2+4,再利用四边形OCMD的面积是关于点M的横坐标x(0<x<4)的二次函数,并且x=2,可知即当点M运动到线段AB的中点时,四边形OCMD为正方形,四边形OCMD的面积最大且最大面积为4.
(3)正方形OCMD的周长被分为1:3时,2a=

1
4
×8,可得结论.
考试点:函数与方程的综合运用.
知识点:本题结合四边形的性质考查二次函数的综合应用,有关函数和几何图形的综合题目,要利用几何图形的性质和二次函数的性质把数与形有机地结合在一起,利用题中所给出的面积和周长之间的数量关系求解.