过抛物线y^2=4x的焦点作倾斜角为60°的弦AB,则|AB|等于

问题描述:

过抛物线y^2=4x的焦点作倾斜角为60°的弦AB,则|AB|等于

y^2=4x = 2*2x 根据y^2=2px,焦点坐标为,(p/2,0) 则焦点坐标即为(2/2,0),即(1,0)过(1,0)的倾斜角为60°的弦AB,斜率为tan60°即根号3将(1,0)代入Y=根号3*X=b,得b=-根号3弦方程为:Y=根号3*X-根号3列出方程组...