如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
问题描述:
如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
答
(1)设正比例函数解析式为y=kx,将点M(-2,-1)坐标代入得k=12,所以正比例函数解析式为y=12x,同样可得,反比例函数解析式为y=2x;(2)当点Q在直线OM上运动时,设点Q的坐标为Q(m,12m),于是S△OBQ=12OB•BQ=...
答案解析:(1)正比例函数和反比例函数的图象都经过点M(-2,-1),设出正比例函数和反比例函数的解析式,运用待定系数法可求它们解析式;(2)因为P(-1,-2)为双曲线Y=2X上的一点,所以△OBQ、△OAP面积为1,依据反比例函数的图象和性质,点Q在双曲线上,即符合条件的点存在,是正比例函数和反比例函数的图象的交点;(3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC,而点P(-1,-2)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值.
考试点:反比例函数综合题.
知识点:此题难度稍大,考查一次函数反比例函数二次函数的图形和性质,综合性比较强.要注意对各个知识点的灵活应用.