如图在四边形ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,(1)如果AD∥BC,AD=BC.观察猜想DF与BE之间的关系,并证明你的猜想;(2)如果AB=7,BE=4.求线段BO的取值范围.
问题描述:
如图在四边形ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,
(1)如果AD∥BC,AD=BC.观察猜想DF与BE之间的关系,并证明你的猜想;
(2)如果AB=7,BE=4.求线段BO的取值范围.
答
(1)猜想:平行且相等
∵AD∥BC,AD=BC,
∴四边形ABCD是平行四边形,
∴BO=DO,AO=CO,
∵点E、点F分别是OA、OC的中点,
∴OE=OF,
∵在△DOF和△BOE中,
,
DO=BO ∠BOE=∠DOF OF=OE
∴△DOF≌△BOE(SAS),
∴DF=BE,∠FDO=∠EBO,
∴DF∥BE,
即DF与BE之间的关系为平行且相等;
(2)在△ABE中,∵AB=7,BE=4,
∴3<AE<11,
∵AO<AB,
∴6<2AE=AO<7,
∴6<AO<7,
在△ABO中,
1<OB<13,
在△BEO中,OB<4,即1<OB<4.
答案解析:(1)首先证明四边形ABCD是平行四边形,由点E、点F分别是OA、OC的中点得出OE=OF,再证明△DOF≌△BOE(SAS),进而证明出猜想的结论;
(2)首先求出AE的长度范围,利用E时AO的中点,求出AO的长度范围,进而求出BO的长度取值范围.
考试点:全等三角形的判定与性质;三角形三边关系.
知识点:本题主要考查三角形全等的判定与性质的知识点,解答本题的关键是熟练掌握全等三角形的判定定理与性质定理以及三角形三边关系的判定,此题有一定的难度.