已知x/3=y=z/2,且xy+xz+yz=99,求2x^2+12^2+9z^2的值

问题描述:

已知x/3=y=z/2,且xy+xz+yz=99,求2x^2+12^2+9z^2的值

x/3=y=z/2=t
x=3t
y=t
z=2t
xy+xz+yz=99=3t^2+6t^2+2t^2=11t^2
t^2=9
2x^2+12^2+9z^2=2*9t^2+12*t^2+9*4t^2=66t^2=9*66=594