P是双曲线x216−y29=1的右支上一点,M、N分别是圆(x+5)2+y2=9和(x-5)2+y2=4上的点,则|PM|-|PN|的最大值为_.

问题描述:

P是双曲线

x2
16
y2
9
=1的右支上一点,M、N分别是圆(x+5)2+y2=9和(x-5)2+y2=4上的点,则|PM|-|PN|的最大值为______.

双曲线的两个焦点为F1(-5,0)、F2(5,0),为两个圆的圆心,半径分别为r1=3,r2=2,
|PM|max=|PF1|+3,|PN|min=|PF2|-2,
故|PM|-|PN|的最大值为(|PF1|+3)-(|PF2|-2)=|PF1|-|PF2|+5=2×4+5=13.
故答案为:13.