设直线l与抛物线y^2=2px(p>0)交于a,b两点,且三角形oab的面积为2分之根号2当直线L经过焦点且与

问题描述:

设直线l与抛物线y^2=2px(p>0)交于a,b两点,且三角形oab的面积为2分之根号2当直线L经过焦点且与
X轴成45度角时,求抛物线的方程

y^2=2px(p>0)焦点坐标(p/2,0)
直线过焦点并且与x轴成45°角,即斜率k=±1,直线方程为y=±1*(x-p/2)= ±(x-p/2)
将y=±(x-p/2)代入y²=2px
(x-p/2)²=2px
x²-3px+p²/4=0
根据韦达定理:
x1+x2=3p,x1x2=p²/4
根据y=±(x-p/2)
y1+y2=±(x1-p/2+x2-p/2)=±{(x1+x2)-p}=±2p
y1y2=±(x1-p/2)*{±(x2-p/2)}=(x1-p/2)(x2-p/2)}=x1x2-p(x1+x2)/2+p²/4=p²/4-p*3p/2+p²/4=-p²

三角形OAB的底边长:
|AB|=√{(x2-x1)²+(y2-y1)²} = √{(x1+x2)²-4x1x2+(y1+y2)²-4y1y2}
= √{(3p)²-4*p²/4+(±2p)²-4*(-p²)} = √(16p²) = 4p

三角形OAB的高即原点到AB所在直线y=±(x-p/2)的距离:
h=p/2 *|sin45°=p/2*√2/2=p√2/4

三角形OAB的min面积为√2/2
1/2*|AB|*h=√2/2
1/2*4p*p√2/4=√2/2
p>0
p=1
抛物线的方程y²=2x