双曲线x^2/4-y^2/b^2=1的左右焦点为F1F2,点P在双曲线上,使|Pf1|,F1f2|,|pf2|成等差数列,且|pf2|

问题描述:

双曲线x^2/4-y^2/b^2=1的左右焦点为F1F2,点P在双曲线上,使|Pf1|,F1f2|,|pf2|成等差数列,且|pf2|

OP=5 /PF1,F1F2,PF2成等差数列,所以PF1+PF2=2F1F2=4c (1)又P在双曲线上,所以|PF1-PF2|=2a =4(2)(1)^2+(2)^2:PF1^2+PF2^2=2(a^2+4c^2)O为△PF1F2的边F1F2上的中点由结论:PF^2+PF2^2=2(OP^2+OF1^2)所以2(a^2...