As in figure 2.In the circular ring of which center is point O.if AO⊥BO,and the area of the shadowy part is 25cm2,then the area of the circuiar ring equals to( ) (π≈3.14)A. 147cm2B. 157cm2C. 167cm2D. 177cm2
问题描述:
As in figure 2.In the circular ring of which center is point O.if AO⊥BO,and the area of the shadowy part is 25cm2,then the area of the circuiar ring equals to( ) (π≈3.14)
A. 147cm2
B. 157cm2
C. 167cm2
D. 177cm2
答
设大圆的半径为R,小圆的半径为r,
∵AO⊥BO,
∴阴影的面积为两个直角三角形的面积之差,
∴R2-r2=50,
∵圆环的面积为两个圆的面积之差,
∴圆环的面积=π(R2-r2)=50π=157cm2.
故选B.
答案解析:设大圆的半径为R,小圆的半径为r,根据阴影的面积为两个直角三角形的面积之差,可得R2-r2=50,又知圆环的面积为两个圆的面积之差,据此即可解得答案.
考试点:面积及等积变换.
知识点:本题主要考查面积及等积变换的知识点,首先根据阴影的面积求出两个圆的半径之间的关系,然后计算圆环的面积,本题解答比较巧.