证明曲面xy=z2与x2+y2+z2=9正交

问题描述:

证明曲面xy=z2与x2+y2+z2=9正交

只需证明这两个曲面在任意点的法向量正交即可,令F(x,y,z)=xy-z^2,G(x,y,z)=x^2+y^2+z^2-9,则F'x=y,F'y=x,F'z=-2z,G'x=2x.G'y=2y,G'z=2z,所以法向量分别为n1=(y,x,-2z),n2=(2x,2y,2z),n1*n2=2xy+2xy-4z^2=0,故n1垂直...