用待定系数法确定(-X+1)/〔(X+1)(X+2)〕=A/(X+1)+B/(X+2)

问题描述:

用待定系数法确定(-X+1)/〔(X+1)(X+2)〕=A/(X+1)+B/(X+2)

(-X+1)/〔(X+1)(X+2)〕=A/(X+1)+B/(X+2)
右边通分
(-X+1)/〔(X+1)(X+2)〕=[A(X+2)+B(X+1)/[(X+1)(X+2)]
(-X+1)/〔(X+1)(X+2)〕=[(A+B)X+(2A+B)]/[(X+1)(X+2)]
所以
A+B=-1
2A+B=1
A=2
B=-3