1日上午8时到12时,若太阳光线与地面所成的角由30°增大到45°,一棵树的高为10m,则树在地面上影长h的范围A、h≤10倍根3 B.10≤h≤10倍根3 C.10<h<15 D.h>10倍根3

问题描述:

1日上午8时到12时,若太阳光线与地面所成的角由30°增大到45°,一棵树的高为10m,则树在地面上影长h的范围
A、h≤10倍根3 B.10≤h≤10倍根3 C.10<h<15 D.h>10倍根3

设太阳光线与地面夹角为θ,由于树高为10,则地面影长
h=10tan(θ)
当30°≤θ≤45°时,h是增函数,即θ越大,h越小
所以
tan(45°)≤tan(θ)≤tan(30°)
又,tan(45°)=1,tan(30°)=根号3
所以
10≤h≤10倍根号3