抽象代数 生成群 ker 满同态π:G→H 是一个满同态,kerπ=T,设 H=,对任意x∈X,存在g属于G,满足π(g)=x,证明G=
问题描述:
抽象代数 生成群 ker 满同态
π:G→H 是一个满同态,kerπ=T,设 H=,对任意x∈X,存在g属于G,满足π(g)=x,证明G=
答
抽象代数 生成群 ker 满同态
π:G→H 是一个满同态,kerπ=T,设 H=,对任意x∈X,存在g属于G,满足π(g)=x,证明G=