已知|X1-1|+|X2-2|+|X3-3|+...+|X2005-2005|=0,求代数式2X1-2X2-2X3-,-2X2005的值.住:X1这种数值为X1=1 X2=22X2指2的X2次方
问题描述:
已知|X1-1|+|X2-2|+|X3-3|+...+|X2005-2005|=0,求代数式2X1-2X2-2X3-,-2X2005的值.
住:X1这种数值为X1=1 X2=2
2X2指2的X2次方
答
x1=1,x2=2,...,xn=n,...,x2005=2005
2^x1-2x^2-2^x3-...-2^x2005=2*2^x1-(2^x1+2^x2+...+2^x2005)=2*2-(2+2^2+2^3+,,,+2^2005)
=4-2*(1-2^2005)/(1-2)=4-2*(2^2005-1)=6-2^2006
答
因为|X1-1|+|X2-2|+|X3-3|+...+|X2005-2005|=0
所以X1=1 X2=2 X3=3……X2005=2005
2X1-2X2-2X3-,,,-2X2005的=2(X1+X2+^+X2005)=2*(1+2005)*2005/2=4022030
答
|X1-1|+|X2-2|+|X3-3|+...+|X2005-2005|=0
所以
|X1-1|=0,|X2-2|=0,|X3-3|=0,...,|X2005-2005|=0
即
x1=1,x2=2,x3=3,.,x2005=2005
所以
2X1-2X2-2X3-,-2X2005
=4x1-2(x1+x2+...+x2005)
=4-2(1+2005)×2005÷2
=4-2006×2005
=-4022026