已知曲线L上任意一点到两个定点F1(-根号3,0)和F2(根号3,0)的距离之和为4.已知曲线与x轴的交点为A,B

问题描述:

已知曲线L上任意一点到两个定点F1(-根号3,0)和F2(根号3,0)的距离之和为4.已知曲线与x轴的交点为A,B
已知曲线C与x轴的交点为A,B,点P是曲线C上异于A、B的任意一点,直线PA,PB分别与y轴交与M、N,求证向量AN*向量BM为定值

此曲线是椭圆,且2a=4即a=2,c=√3,所以b²=a²-c²=1.其方程是x²/4+y²=1.设:P(n,m),M(x1,y1)、N(x2,y2).则A(-2,0),B(2,0),且n²/4+m²=1直线PA:(y-m)/m=(x-n)/(n+2),以x=0代...