1+1/1+2+1/1+2+3······+1/1+2+3+4+5+6······+46+47+48+49+50得多少?

问题描述:

1+1/1+2+1/1+2+3······+1/1+2+3+4+5+6······+46+47+48+49+50得多少?

1/(1+2+3+4.+n) =1/[n(n+1)/2]=2[1/n-1/(n+1)]
1/1+2=2(1/2-1/3)
1/1+2+3+4+5+6······+46+47+48+49+50=2(1/50-1/51)
所以原式=1+2(1/2-1/3+1/3-1/4+……+1/48-1/49+1/49-1/50+1/50-1/51)
=1+2(1/2-1/51)
=100/51