设AB分别为椭圆x2/a2+y2/b2=1(a>b>0)的左右顶点,椭圆长轴长为4,且点(1,根号3/2)在该椭圆上,(1)求椭圆方程(2)设P为直线x=4上不同于(4,0)的一点,若直线AP与椭圆相交于异于A的点M,证明△MBP为钝角三角
问题描述:
设AB分别为椭圆x2/a2+y2/b2=1(a>b>0)的左右顶点,椭圆长轴长为4,且点(1,根号3/2)在该椭圆上,(1)求椭圆方程(2)设P为直线x=4上不同于(4,0)的一点,若直线AP与椭圆相交于异于A的点M,证明△MBP为钝角三角形.老师给了3种思路,设P,设M,设斜率,我算出来答案差好多0.
答
(1)a=2 b=1