整式的加减问题(1)任意写一个两位数(2)交换这个两位数的十位数字和个位数字,又得到一个数(3)求这两个数的和这个式子总是成立的,这是什么规律啊,如果换成任意一个三位数呢,把百位跟个位交换,两个数相减,又是什么规律呢
问题描述:
整式的加减问题
(1)任意写一个两位数
(2)交换这个两位数的十位数字和个位数字,又得到一个数
(3)求这两个数的和
这个式子总是成立的,这是什么规律啊,
如果换成任意一个三位数呢,把百位跟个位交换,两个数相减,又是什么规律呢
答
都是11的倍数,是的,都成立
设该2位数=10x+y 其中x和y都是大于等于1小于等于9的整数
交换后的2位数是 10y+x
两数相加=11x+11y=11(x+y)
所以得证