已知:如图,在△ABC中,∠BCA=90°,D、E分别是AC、AB的中点,点F在BC延长线上,且∠CDF=∠A. (1)求证:四边形DECF是平行四边形; (2)BC/AB=3/5,四边形EBFD的周长为22,求四边形DECF的面积

问题描述:

已知:如图,在△ABC中,∠BCA=90°,D、E分别是AC、AB的中点,点F在BC延长线上,且∠CDF=∠A.

(1)求证:四边形DECF是平行四边形;
(2)

BC
AB
3
5
,四边形EBFD的周长为22,求四边形DECF的面积.(注:直角三角形斜边上的中线等于斜边的一半.)

(1)证明:∵AE=EB,AD=DC,
∴ED∥BC.
∵点F在BC延长线上,
∴ED∥CF.
∵AD=DC,ED=DE,∠ADE=∠EDC,
∴△ADE≌△CDE.
∴∠A=∠ECD.
∵∠CDF=∠A,
∴∠CDF=∠ECD.
∴EC∥DF.
∴四边形DECF是平行四边形.
(2)∵AE=EC=EB=

1
2
AB,ED∥CF,EC∥DF,D、E分别是AC、AB的中点,
∴ED=CF=
1
2
BC.
∵EBFD周长为22,
∴2BC+AB=22.
BC
AB
=
3
5

∴AB=
5
3
BC.
∴(2+
5
3
)BC=22.
∴BC=6.EC=5
∴ED=3.∴DC=4,
∴四边形DECF的面积=3×4=12.