已知a1,a2,a3是R3的基,a=a1+a2+a3,求由基a1,a2,a3,到基a1+a2,a2+a3,a3+a1的过度矩阵,并求a在新基下的坐标
问题描述:
已知a1,a2,a3是R3的基,a=a1+a2+a3,求由基a1,a2,a3,到基a1+a2,a2+a3,a3+a1的过度矩阵,
并求a在新基下的坐标
答
(a1+a2,a2+a3,a3+a1)=(a1,a2,a3) PP = 1 0 11 1 00 1 1P 即为所求过渡矩阵.由 a=a1+a2+a31 0 1 11 1 0 10 1 1 1r2-r11 0 1 10 1 -1 00 1 1 1r3-r21 0 1 10 1 -1 00 0 2 1r3*(1/2),r1-r3,r2+r31 0 0 1/20 1 0 1/20 0 ...