用数学归纳法证明1-2²+3²-4²+5²-…+n²(-1)^n-1=(-1)^n-1(1+2+3+…+n)
问题描述:
用数学归纳法证明1-2²+3²-4²+5²-…+n²(-1)^n-1=(-1)^n-1(1+2+3+…+n)
答
证明:
(1)当n=1时1=(-1)^0*1,成立 即当n=1时上式成立
(2)假设当n=K(K∈N*)时上式成立即
1-2^2+3^2-4^2...+(-1)^(K-1)*K^2=(-1)^(K-1)*(1+2+3+.+K)
则当n=K+1时
左边=1-2^2+3^2-4^2...+(-1)^(K-1)*K^2+(-1)^K*(K+1)^2
=(-1)^(K-1)*(1+2+3+.+K)+(-1)^K*(K+1)^2
=(-1)^(k-1)* k(k+1)/2+(-1)^K*(K+1)^2
=(-1)^k*[(k+1)²- k(k+1)/2]
=(-1)^k* [(k+1)/(k+2)/2]
=(-1)^(K+1-1)*(1+2+3+.+K+ (k+1))
即当n=K+1时上式也成立
综上, 由(1)(2)
1-2^2+3^2-4^2...+(-1)^(n-1)*n^2=(-1)^n-1(1+2+3+…+n)